Jeffreys Prior - Minimum Description Length

Minimum Description Length

In the minimum description length approach to statistics the goal is to describe data as compactly as possible where the length of a description is measured in bits of the code used. For a parametric family of distributions one compares a code with the best code based on one of the distributions in the parameterized family. The main result is that in exponential families, asymptotically for large sample size, the code based on the distribution that is a mixture of the elements in the exponential family with the Jeffreys prior is optimal. This result holds if one restricts the parameter set to a compact subset in the interior of the full parameter space. If the full parameter is used a modified version of the result should be used.

Read more about this topic:  Jeffreys Prior

Famous quotes containing the words minimum, description and/or length:

    There are ... two minimum conditions necessary and sufficient for the existence of a legal system. On the one hand those rules of behavior which are valid according to the system’s ultimate criteria of validity must be generally obeyed, and on the other hand, its rules of recognition specifying the criteria of legal validity and its rules of change and adjudication must be effectively accepted as common public standards of official behavior by its officials.
    —H.L.A. (Herbert Lionel Adolphus)

    Once a child has demonstrated his capacity for independent functioning in any area, his lapses into dependent behavior, even though temporary, make the mother feel that she is being taken advantage of....What only yesterday was a description of the child’s stage in life has become an indictment, a judgment.
    Elaine Heffner (20th century)

    When I had mapped the pond ... I laid a rule on the map lengthwise, and then breadthwise, and found, to my surprise, that the line of greatest length intersected the line of greatest breadth exactly at the point of greatest depth.
    Henry David Thoreau (1817–1862)