Inverse Transform Sampling - Proof of Correctness

Proof of Correctness

Let F be a continuous cumulative distribution function, and let F−1 be its inverse function (using the infimum because CDFs are weakly monotonic and right-continuous):

Claim: If U is a uniform random variable on (0, 1) then follows the distribution F.

Proof:


\begin{align}
& \Pr(F^{-1}(U) \leq x) \\
& {} = \Pr(\inf\;\{y \mid F(y)=U\} \leq x)\quad &\text{(by definition of }F^{-1}) \\
& {} = \Pr(U \leq F(x)) \quad &\text{(applying }F,\text{ which is monotonic, to both sides)} \\
& {} = F(x)\quad &\text{(because }\Pr(U \leq y) = y,\text{ since }U\text{ is uniform on the unit interval)}.
\end{align}

Read more about this topic:  Inverse Transform Sampling

Famous quotes containing the words proof of, proof and/or correctness:

    From whichever angle one looks at it, the application of racial theories remains a striking proof of the lowered demands of public opinion upon the purity of critical judgment.
    Johan Huizinga (1872–1945)

    It comes to pass oft that a terrible oath, with a swaggering accent sharply twanged off, gives manhood more approbation than ever proof itself would have earned him.
    William Shakespeare (1564–1616)

    With impressive proof on all sides of magnificent progress, no one can rightly deny the fundamental correctness of our economic system.
    Herbert Hoover (1874–1964)