Invariant Subspace - Fundamental Theorem of Noncommutative Algebra

Fundamental Theorem of Noncommutative Algebra

Just as the fundamental theorem of algebra ensures that every linear transformation acting on a finite dimensional complex vector space has a nontrivial invariant subspace, the fundamental theorem of noncommutative algebra asserts that Lat(Σ) contains nontrivial elements for certain Σ.

Theorem (Burnside) Assume V is a complex vector space of finite dimension. For every proper subalgebra Σ of L(V), Lat(Σ) contain a nontrivial element.

Burnside's theorem is of fundamental importance in linear algebra. One consequence is that every commuting family in L(V) can be simultaneously upper-triangularized.

A nonempty Σ ⊂ L(V) is said to be triangularizable if there exists a basis {e1...en} of V such that

In other words, Σ is triangularizable if there exists a basis such that every element of Σ has an upper-triangular matrix representation in that basis. It follows from Burnside's theorem that every commutative algebra Σ in L(V) is triangularizable. Hence every commuting family in L(V) can be simultaneously upper-triangularized.

Read more about this topic:  Invariant Subspace

Famous quotes containing the words fundamental, theorem and/or algebra:

    In this choice of inheritance we have given to our frame of polity the image of a relation in blood; binding up the constitution of our country with our dearest domestic ties; adopting our fundamental laws into the bosom of our family affections; keeping inseparable and cherishing with the warmth of all their combined and mutually reflected charities, our state, our hearths, our sepulchres, and our altars.
    Edmund Burke (1729–1797)

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)

    Poetry has become the higher algebra of metaphors.
    José Ortega Y Gasset (1883–1955)