Invariant Subspace Problem

In the field of mathematics known as functional analysis, the invariant subspace problem for a complex Banach space H of dimension > 1 is the question whether every bounded linear operator T : HH has a non-trivial closed T-invariant subspace (a closed linear subspace W of H which is different from {0} and H such that T(W) ⊆ W).

To find a "counterexample" to the invariant subspace problem, means to answer affirmatively the following equivalent question: does there exist a bounded linear operator T : HH such that for every non-zero vector x, the vector space generated by the sequence {T n(x) : n ≥ 0} is norm dense in H? Such operators are called cyclic.

For the most important case of Hilbert spaces H this is still open (as of 2010), though Per Enflo showed that the invariant subspace problem is false for some Banach spaces.

Read more about Invariant Subspace Problem:  Known Special Cases

Famous quotes containing the word problem:

    It is part of the educator’s responsibility to see equally to two things: First, that the problem grows out of the conditions of the experience being had in the present, and that it is within the range of the capacity of students; and, secondly, that it is such that it arouses in the learner an active quest for information and for production of new ideas. The new facts and new ideas thus obtained become the ground for further experiences in which new problems are presented.
    John Dewey (1859–1952)