Intrinsic Viscosity

Intrinsic viscosity is a measure of a solute's contribution to the viscosity of a solution. Intrinsic viscosity is frequently referred to as "Inherent Viscosity" in macromolecular literature. It is defined as


\left = \lim_{\phi \rightarrow 0} \frac{\eta - \eta_{0}}{\eta_{0}\phi}

where is the viscosity in the absence of the solute and is the volume fraction of the solute in the solution. As defined here, the intrinsic viscosity is a dimensionless number. When the solute particles are rigid spheres, the intrinsic viscosity equals 
\frac{5}{2}, as shown first by Albert Einstein.

In practical settings, φ is usually solute mass concentration, and the units of intrinsic viscosity are deciliters per gram (dL/g), otherwise known as inverse concentration.

Read more about Intrinsic Viscosity:  Formulae For Rigid Spheroids, General Ellipsoidal Formulae, Frequency Dependence, Applications

Famous quotes containing the word intrinsic:

    It is not in our drawing-rooms that we should look to judge of the intrinsic worth of any style of dress. The street-car is a truer crucible of its inherent value.
    Elizabeth Stuart Phelps (1844–1911)