Intrinsic Viscosity - Formulae For Rigid Spheroids

Formulae For Rigid Spheroids

Generalizing from spheres to spheroids with an axial semiaxis (i.e., the semiaxis of revolution) and equatorial semiaxes, the intrinsic viscosity can be written


\left =
\left( \frac{4}{15} \right) (J + K - L) +
\left( \frac{2}{3} \right) L +
\left( \frac{1}{3} \right) M +
\left( \frac{1}{15} \right) N

where the constants are defined


M \ \stackrel{\mathrm{def}}{=}\ \frac{1}{a b^{4}} \frac{1}{J_{\alpha}^{\prime}}

K \ \stackrel{\mathrm{def}}{=}\ \frac{M}{2}

J \ \stackrel{\mathrm{def}}{=}\ K \frac{J_{\alpha}^{\prime\prime}}{J_{\beta}^{\prime\prime}}

L \ \stackrel{\mathrm{def}}{=}\ \frac{2}{a b^{2} \left( a^{2} + b^{2} \right)}
\frac{1}{J_{\beta}^{\prime}}

N \ \stackrel{\mathrm{def}}{=}\ \frac{6}{a b^{2}}
\frac{\left( a^{2} - b^{2} \right)}{a^{2} J_{\alpha} + b^{2} J_{\beta}}

The coefficients are the Jeffery functions


J_{\alpha} =
\int_{0}^{\infty} \frac{dx}{\left( x + b^{2} \right) \sqrt{\left( x + a^{2} \right)^{3}}}

J_{\beta} =
\int_{0}^{\infty} \frac{dx}{\left( x + b^{2} \right)^{2} \sqrt{\left( x + a^{2} \right)}}

J_{\alpha}^{\prime} =
\int_{0}^{\infty} \frac{dx}{\left( x + b^{2} \right)^{3} \sqrt{\left( x + a^{2} \right)}}

J_{\beta}^{\prime} =
\int_{0}^{\infty} \frac{dx}{\left( x + b^{2} \right)^{2} \sqrt{\left( x + a^{2} \right)^{3}}}

J_{\alpha}^{\prime\prime} =
\int_{0}^{\infty} \frac{x\ dx}{\left( x + b^{2} \right)^{3} \sqrt{\left( x + a^{2} \right)}}

J_{\beta}^{\prime\prime} =
\int_{0}^{\infty} \frac{x\ dx}{\left( x + b^{2} \right)^{2} \sqrt{\left( x + a^{2} \right)^{3}}}

Read more about this topic:  Intrinsic Viscosity

Famous quotes containing the words formulae and/or rigid:

    I don’t believe in providence and fate, as a technologist I am used to reckoning with the formulae of probability.
    Max Frisch (1911–1991)

    It’s fairly obvious that American education is a cultural flop. Americans are not a well-educated people culturally, and their vocational education often has to be learned all over again after they leave school and college. On the other hand, they have open quick minds and if their education has little sharp positive value, it has not the stultifying effects of a more rigid training.
    Raymond Chandler (1888–1959)