Intrinsic Viscosity - Formulae For Rigid Spheroids

Formulae For Rigid Spheroids

Generalizing from spheres to spheroids with an axial semiaxis (i.e., the semiaxis of revolution) and equatorial semiaxes, the intrinsic viscosity can be written


\left =
\left( \frac{4}{15} \right) (J + K - L) +
\left( \frac{2}{3} \right) L +
\left( \frac{1}{3} \right) M +
\left( \frac{1}{15} \right) N

where the constants are defined


M \ \stackrel{\mathrm{def}}{=}\ \frac{1}{a b^{4}} \frac{1}{J_{\alpha}^{\prime}}

K \ \stackrel{\mathrm{def}}{=}\ \frac{M}{2}

J \ \stackrel{\mathrm{def}}{=}\ K \frac{J_{\alpha}^{\prime\prime}}{J_{\beta}^{\prime\prime}}

L \ \stackrel{\mathrm{def}}{=}\ \frac{2}{a b^{2} \left( a^{2} + b^{2} \right)}
\frac{1}{J_{\beta}^{\prime}}

N \ \stackrel{\mathrm{def}}{=}\ \frac{6}{a b^{2}}
\frac{\left( a^{2} - b^{2} \right)}{a^{2} J_{\alpha} + b^{2} J_{\beta}}

The coefficients are the Jeffery functions


J_{\alpha} =
\int_{0}^{\infty} \frac{dx}{\left( x + b^{2} \right) \sqrt{\left( x + a^{2} \right)^{3}}}

J_{\beta} =
\int_{0}^{\infty} \frac{dx}{\left( x + b^{2} \right)^{2} \sqrt{\left( x + a^{2} \right)}}

J_{\alpha}^{\prime} =
\int_{0}^{\infty} \frac{dx}{\left( x + b^{2} \right)^{3} \sqrt{\left( x + a^{2} \right)}}

J_{\beta}^{\prime} =
\int_{0}^{\infty} \frac{dx}{\left( x + b^{2} \right)^{2} \sqrt{\left( x + a^{2} \right)^{3}}}

J_{\alpha}^{\prime\prime} =
\int_{0}^{\infty} \frac{x\ dx}{\left( x + b^{2} \right)^{3} \sqrt{\left( x + a^{2} \right)}}

J_{\beta}^{\prime\prime} =
\int_{0}^{\infty} \frac{x\ dx}{\left( x + b^{2} \right)^{2} \sqrt{\left( x + a^{2} \right)^{3}}}

Read more about this topic:  Intrinsic Viscosity

Famous quotes containing the words formulae and/or rigid:

    I don’t believe in providence and fate, as a technologist I am used to reckoning with the formulae of probability.
    Max Frisch (1911–1991)

    It is the custom of the Roman Church which I unworthily serve with the help of God, to tolerate some things, to turn a blind eye to some, following the spirit of discretion rather than the rigid letter of the law.
    Pope Gregory VII (c. 1020–1085)