Definition
Let {I1, I2, ..., In} ⊂ P(R) be a set of intervals.
The corresponding interval graph is G = (V, E), where
- V = {I1, I2, ..., In}, and
- {Iα, Iβ} ∈ E if and only if Iα ∩ Iβ ≠ ∅.
From this construction one can verify a common property held by all interval graphs. That is, graph G is an interval graph if and only if the maximal cliques of G can be ordered M1, M2, ..., Mk such that for any v ∈ Mi ∩ Mk, where i < k, it is also the case that v ∈ Mj for any Mj, i ≤ j ≤ k.
Read more about this topic: Interval Graph
Famous quotes containing the word definition:
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)