Internal Set Theory
Internal set theory (IST) is a mathematical theory of sets developed by Edward Nelson that provides an axiomatic basis for a portion of the non-standard analysis introduced by Abraham Robinson. Instead of adding new elements to the real numbers, the axioms introduce a new term, "standard", which can be used to make discriminations not possible under the conventional axioms for sets. Thus, IST is an enrichment of ZFC: all axioms of ZFC are satisfied for all classical predicates, while the new unary predicate "standard" satisfies three additional axioms I, S, and T. In particular, suitable non-standard elements within the set of real numbers can be shown to have properties that correspond to the properties of infinitesimal and unlimited elements.
Nelson's formulation is made more accessible for the lay-mathematician by leaving out many of the complexities of meta-mathematical logic that were initially required to justify rigorously the consistency of infinitesimal elements.
Read more about Internal Set Theory: Intuitive Justification, Formal Axioms For IST, Formal Justification For The Axioms
Famous quotes containing the words internal, set and/or theory:
“Unlike femininity, relaxed masculinity is at bottom empty, a limp nullity. While the female body is full of internal potentiality, the male is internally barren.... Manhood at the most basic level can be validated and expressed only in action.”
—George Gilder (b. 1939)
“You have a row of dominoes set up; you knock over the first one, and what will happen to the last one is that it will go over very quickly.”
—Dwight D. Eisenhower (18901969)
“We have our little theory on all human and divine things. Poetry, the workings of genius itself, which, in all times, with one or another meaning, has been called Inspiration, and held to be mysterious and inscrutable, is no longer without its scientific exposition. The building of the lofty rhyme is like any other masonry or bricklaying: we have theories of its rise, height, decline and fallwhich latter, it would seem, is now near, among all people.”
—Thomas Carlyle (17951881)