Improper Integral - Cauchy Principal Value

Cauchy Principal Value

Consider the difference in values of two limits:

The former is the Cauchy principal value of the otherwise ill-defined expression

\int_{-1}^1\frac{\mathrm{d}x}{x}{\ }
\left(\mbox{which}\ \mbox{gives}\ -\infty+\infty\right).

Similarly, we have

but

The former is the principal value of the otherwise ill-defined expression

\int_{-\infty}^\infty\frac{2x\,\mathrm{d}x}{x^2+1}{\ }
\left(\mbox{which}\ \mbox{gives}\ -\infty+\infty\right).

All of the above limits are cases of the indeterminate form ∞ − ∞.

These pathologies do not affect "Lebesgue-integrable" functions, that is, functions the integrals of whose absolute values are finite.

Read more about this topic:  Improper Integral

Famous quotes containing the word principal:

    ... [a] girl one day flared out and told the principal “the only mission opening before a girl in his school was to marry one of those candidates [for the ministry].” He said he didn’t know but it was. And when at last that same girl announced her desire and intention to go to college it was received with about the same incredulity and dismay as if a brass button on one of those candidate’s coats had propounded a new method for squaring the circle or trisecting the arc.
    Anna Julia Cooper (1859–1964)