Improper Integral - Cauchy Principal Value

Cauchy Principal Value

Consider the difference in values of two limits:

The former is the Cauchy principal value of the otherwise ill-defined expression

\int_{-1}^1\frac{\mathrm{d}x}{x}{\ }
\left(\mbox{which}\ \mbox{gives}\ -\infty+\infty\right).

Similarly, we have

but

The former is the principal value of the otherwise ill-defined expression

\int_{-\infty}^\infty\frac{2x\,\mathrm{d}x}{x^2+1}{\ }
\left(\mbox{which}\ \mbox{gives}\ -\infty+\infty\right).

All of the above limits are cases of the indeterminate form ∞ − ∞.

These pathologies do not affect "Lebesgue-integrable" functions, that is, functions the integrals of whose absolute values are finite.

Read more about this topic:  Improper Integral

Famous quotes containing the word principal:

    The principal thing children are taught by hearing these lullabies is respect. They are taught to respect certain things in life and certain people. By giving respect, they hope to gain self-respect and through self-respect, they gain the respect of others. Self-respect is one of the qualities my people stress and try to nurture, and one of the controls an Indian has as he grows up. Once you lose your self-respect, you just go down.
    Henry Old Coyote (20th century)