Image Segmentation - Trainable Segmentation

Trainable Segmentation

Most segmentation methods are based only on color information of pixels in the image. Humans use much more knowledge than this when doing image segmentation, but implementing this knowledge would cost considerable computation time and would require a huge domain-knowledge database, which is currently not available. In addition to traditional segmentation methods, there are trainable segmentation methods which can model some of this knowledge.

Neural Network segmentation relies on processing small areas of an image using an artificial neural network or a set of neural networks. After such processing the decision-making mechanism marks the areas of an image accordingly to the category recognized by the neural network. A type of network designed especially for this is the Kohonen map.

Pulse-coupled neural networks (PCNNs) are neural models proposed by modeling a cat’s visual cortex and developed for high-performance biomimetic image processing. In 1989, Eckhorn introduced a neural model to emulate the mechanism of a cat’s visual cortex. The Eckhorn model provided a simple and effective tool for studying the visual cortex of small mammals, and was soon recognized as having significant application potential in image processing. In 1994, the Eckhorn model was adapted to be an image processing algorithm by Johnson, who termed this algorithm Pulse-Coupled Neural Network. Over the past decade, PCNNs have been utilized for a variety of image processing applications, including: image segmentation, feature generation, face extraction, motion detection, region growing, noise reduction, and so on. A PCNN is a two-dimensional neural network. Each neuron in the network corresponds to one pixel in an input image, receiving its corresponding pixel’s color information (e.g. intensity) as an external stimulus. Each neuron also connects with its neighboring neurons, receiving local stimuli from them. The external and local stimuli are combined in an internal activation system, which accumulates the stimuli until it exceeds a dynamic threshold, resulting in a pulse output. Through iterative computation, PCNN neurons produce temporal series of pulse outputs. The temporal series of pulse outputs contain information of input images and can be utilized for various image processing applications, such as image segmentation and feature generation. Compared with conventional image processing means, PCNNs have several significant merits, including robustness against noise, independence of geometric variations in input patterns, capability of bridging minor intensity variations in input patterns, etc.

Open-source implementations of trainable segmentation:

  • Trainable Segmentation Plugin
  • IMMI

Read more about this topic:  Image Segmentation