Image Segmentation - Graph Partitioning Methods

Graph Partitioning Methods

Graph partitioning methods can effectively be used for image segmentation. In these methods, the image is modeled as a weighted, undirected graph. Usually a pixel or a group of pixels are associated with nodes and edge weights define the (dis)similarity between the neighborhood pixels. The graph (image) is then partitioned according to a criterion designed to model "good" clusters. Each partition of the nodes (pixels) output from these algorithms are considered an object segment in the image. Some popular algorithms of this category are normalized cuts, random walker, minimum cut, isoperimetric partitioning and minimum spanning tree-based segmentation.

Read more about this topic:  Image Segmentation

Famous quotes containing the words graph and/or methods:

    When producers want to know what the public wants, they graph it as curves. When they want to tell the public what to get, they say it in curves.
    Marshall McLuhan (1911–1980)

    The comparison between Coleridge and Johnson is obvious in so far as each held sway chiefly by the power of his tongue. The difference between their methods is so marked that it is tempting, but also unnecessary, to judge one to be inferior to the other. Johnson was robust, combative, and concrete; Coleridge was the opposite. The contrast was perhaps in his mind when he said of Johnson: “his bow-wow manner must have had a good deal to do with the effect produced.”
    Virginia Woolf (1882–1941)