Hubbert Curve - Shape

Shape

The prototypical Hubbert curve is a probability density function of a logistic distribution curve. It is not a gaussian function (which is used to plot normal distributions), but the two have a similar appearance. The density of a Hubbert curve approaches zero more slowly than a gaussian function:


x = {e^{-t}\over(1+e^{-t})^2}={1\over2+2\cosh t}.

The graph of a Hubbert curve consists of three key elements:

  1. a gradual rise from zero resource production that then increases quickly
  2. a "Hubbert peak", representing the maximum production level
  3. a drop from the peak that then follows a steep production decline.

The actual shape of a graph of real world production trends is determined by various factors, such as development of enhanced production techniques, availability of competing resources, and government regulations on production or consumption. Because of such factors, real world Hubbert curves are often not symmetrical.

Read more about this topic:  Hubbert Curve

Famous quotes containing the word shape:

    There are men from whom nature or some peculiar destiny has removed the cover beneath which we hide our own madness. They are like thin-skinned insects whose visible play of muscles seem to make them deformed, though in fact, everything soon turns to its normal shape again.
    —E.T.A.W. (Ernst Theodor Amadeus Wilhelm)

    In the multitude of middle-aged men who go about their vocations in a daily course determined for them much in the same way as the tie of their cravats, there is always a good number who once meant to shape their own deeds and alter the world a little.
    George Eliot [Mary Ann (or Marian)

    The shape of a rat?
    It’s bigger than that.
    It’s less than a leg
    And more than a nose,
    Just under the water
    It usually goes.
    Theodore Roethke (1908–1963)