History of Quaternions

History Of Quaternions

In mathematics, quaternions are a non-commutative number system that extends the complex numbers. Quaternions and their applications to rotations were first described in print by Olinde Rodrigues in all but name in 1840, but independently discovered by Irish mathematician Sir William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. They find uses in both theoretical and applied mathematics, in particular for calculations involving three-dimensional rotations. This article describes the original invention and subsequent development of quaternions.

Read more about History Of Quaternions:  Hamilton's Discovery, Precursors, After Hamilton, Octonions, Mathematical Uses, Quaternions As Rotations, Memorial

Famous quotes containing the words history of and/or history:

    Look through the whole history of countries professing the Romish religion, and you will uniformly find the leaven of this besetting and accursed principle of action—that the end will sanction any means.
    Samuel Taylor Coleridge (1772–1834)

    History ... is, indeed, little more than the register of the crimes, follies, and misfortunes of mankind.
    But what experience and history teach is this—that peoples and governments have never learned anything from history, or acted on principles deduced from it.
    Georg Wilhelm Friedrich Hegel (1770–1831)