Mathematical Description
In mathematics, a helix is a curve in 3-dimensional space. The following parametrisation in Cartesian coordinates defines a helix:
As the parameter t increases, the point (x(t),y(t),z(t)) traces a right-handed helix of pitch 2π and radius 1 about the z-axis, in a right-handed coordinate system.
In cylindrical coordinates (r, θ, h), the same helix is parametrised by:
A circular helix of radius a and pitch 2πb is described by the following parametrisation:
Another way of mathematically constructing a helix is to plot a complex valued exponential function (exi) taking imaginary arguments (see Euler's formula).
Except for rotations, translations, and changes of scale, all right-handed helices are equivalent to the helix defined above. The equivalent left-handed helix can be constructed in a number of ways, the simplest being to negate any one of the x, y or z components.
Read more about this topic: Helix
Famous quotes containing the words mathematical and/or description:
“What is history? Its beginning is that of the centuries of systematic work devoted to the solution of the enigma of death, so that death itself may eventually be overcome. That is why people write symphonies, and why they discover mathematical infinity and electromagnetic waves.”
—Boris Pasternak (18901960)
“The type of fig leaf which each culture employs to cover its social taboos offers a twofold description of its morality. It reveals that certain unacknowledged behavior exists and it suggests the form that such behavior takes.”
—Freda Adler (b. 1934)