Hausdorff Distance

In mathematics, the Hausdorff distance, or Hausdorff metric, also called Pompeiu–Hausdorff distance, measures how far two subsets of a metric space are from each other. It turns the set of non-empty compact subsets of a metric space into a metric space in its own right. It is named after Felix Hausdorff.

Informally, two sets are close in the Hausdorff distance if every point of either set is close to some point of the other set. The Hausdorff distance is the longest distance you can be forced to travel by an adversary who chooses a point in one of the two sets, from where you then must travel to the other set. In other words, it is the greatest of all the distances from a point in one set to the closest point in the other set.

It seems that this distance was first introduced by Hausdorff in his book "Grundzüge der Mengenlehre" the first edition published in 1914.

Read more about Hausdorff Distance:  Definition, Properties, Motivation, Applications, Related Concepts

Famous quotes containing the word distance:

    I do believe that the outward and the inward life correspond; that if any should succeed to live a higher life, others would not know of it; that difference and distance are one. To set about living a true life is to go on a journey to a distant country, gradually to find ourselves surrounded by new scenes and men; and as long as the old are around me, I know that I am not in any true sense living a new or a better life.
    Henry David Thoreau (1817–1862)