Geometry of Hamiltonian Systems
A Hamiltonian system may be understood as a fiber bundle E over time R, with the fibers Et, t ∈ R, being the position space. The Lagrangian is thus a function on the jet bundle J over E; taking the fiberwise Legendre transform of the Lagrangian produces a function on the dual bundle over time whose fiber at t is the cotangent space T*Et, which comes equipped with a natural symplectic form, and this latter function is the Hamiltonian.
Read more about this topic: Hamiltonian Mechanics
Famous quotes containing the words geometry of, geometry and/or systems:
“The geometry of landscape and situation seems to create its own systems of time, the sense of a dynamic element which is cinematising the events of the canvas, translating a posture or ceremony into dynamic terms. The greatest movie of the 20th century is the Mona Lisa, just as the greatest novel is Grays Anatomy.”
—J.G. (James Graham)
“I am present at the sowing of the seed of the world. With a geometry of sunbeams, the soul lays the foundations of nature.”
—Ralph Waldo Emerson (18031882)
“The skylines lit up at dead of night, the air- conditioning systems cooling empty hotels in the desert and artificial light in the middle of the day all have something both demented and admirable about them. The mindless luxury of a rich civilization, and yet of a civilization perhaps as scared to see the lights go out as was the hunter in his primitive night.”
—Jean Baudrillard (b. 1929)