Hamiltonian Mechanics - Geometry of Hamiltonian Systems

Geometry of Hamiltonian Systems

A Hamiltonian system may be understood as a fiber bundle E over time R, with the fibers Et, tR, being the position space. The Lagrangian is thus a function on the jet bundle J over E; taking the fiberwise Legendre transform of the Lagrangian produces a function on the dual bundle over time whose fiber at t is the cotangent space T*Et, which comes equipped with a natural symplectic form, and this latter function is the Hamiltonian.

Read more about this topic:  Hamiltonian Mechanics

Famous quotes containing the words geometry of, geometry and/or systems:

    The geometry of landscape and situation seems to create its own systems of time, the sense of a dynamic element which is cinematising the events of the canvas, translating a posture or ceremony into dynamic terms. The greatest movie of the 20th century is the Mona Lisa, just as the greatest novel is Gray’s Anatomy.
    —J.G. (James Graham)

    I am present at the sowing of the seed of the world. With a geometry of sunbeams, the soul lays the foundations of nature.
    Ralph Waldo Emerson (1803–1882)

    The skylines lit up at dead of night, the air- conditioning systems cooling empty hotels in the desert and artificial light in the middle of the day all have something both demented and admirable about them. The mindless luxury of a rich civilization, and yet of a civilization perhaps as scared to see the lights go out as was the hunter in his primitive night.
    Jean Baudrillard (b. 1929)