Calculating The Global-warming Potential
Just as radiative forcing provides a simplified means of comparing the various factors that are believed to influence the climate system to one another, global-warming potentials (GWPs) are one type of simplified index based upon radiative properties that can be used to estimate the potential future impacts of emissions of different gases upon the climate system in a relative sense. GWP is based on a number of factors, including the radiative efficiency (infrared-absorbing ability) of each gas relative to that of carbon dioxide, as well as the decay rate of each gas (the amount removed from the atmosphere over a given number of years) relative to that of carbon dioxide.
The radiative forcing capacity (RF) is the amount of energy per unit area, per unit time, absorbed by the greenhouse gas, that would otherwise be lost to space. It can be expressed by the formula:
where the subscript i represents an interval of 10 inverse centimeters. Absi represents the integrated infrared absorbance of the sample in that interval, and Fi represents the RF for that interval.
The Intergovernmental Panel on Climate Change (IPCC) provides the generally accepted values for GWP, which changed slightly between 1996 and 2001. An exact definition of how GWP is calculated is to be found in the IPCC's 2001 Third Assessment Report. The GWP is defined as the ratio of the time-integrated radiative forcing from the instantaneous release of 1 kg of a trace substance relative to that of 1 kg of a reference gas:
where TH is the time horizon over which the calculation is considered; ax is the radiative efficiency due to a unit increase in atmospheric abundance of the substance (i.e., Wm−2 kg−1) and is the time-dependent decay in abundance of the substance following an instantaneous release of it at time t=0. The denominator contains the corresponding quantities for the reference gas (i.e. CO2). The radiative efficiencies ax and ar are not necessarily constant over time. While the absorption of infrared radiation by many greenhouse gases varies linearly with their abundance, a few important ones display non-linear behaviour for current and likely future abundances (e.g., CO2, CH4, and N2O). For those gases, the relative radiative forcing will depend upon abundance and hence upon the future scenario adopted.
Since all GWP calculations are a comparison to CO2 which is non-linear, all GWP values are affected. Assuming otherwise as is done above will lead to lower GWPs for other gases than a more detailed approach would.
Read more about this topic: Global-warming Potential
Famous quotes containing the words calculating the, calculating and/or potential:
“[The] elderly and timid single gentleman in Paris ... never drove down the Champs Elysees without expecting an accident, and commonly witnessing one; or found himself in the neighborhood of an official without calculating the chances of a bomb. So long as the rates of progress held good, these bombs would double in force and number every ten years.”
—Henry Brooks Adams (18381918)
“Because relationships are a primary source of self-esteem for girls and women, daughters need to know they will not lose our love if they speak up for what they want to tell us how they feel about things. . . . Teaching girls to make specific requests, rather than being indirect and agreeable, will help them avoid the pitfalls of having to be manipulative and calculating to get what they want.”
—Jeanne Elium (20th century)
“The traditional American husband and father had the responsibilitiesand the privilegesof playing the role of primary provider. Sharing that role is not easy. To yield exclusive access to the role is to surrender some of the potential for fulfilling the hero fantasya fantasy that appeals to us all. The loss is far from trivial.”
—Faye J. Crosby (20th century)