Gene - Changing Concept

Changing Concept

The concept of the gene has changed considerably (see history section). From the original definition of a "unit of inheritance", the term evolved to mean a DNA-based unit that can exert its effects on the organism through RNA or protein products. It was also previously believed that one gene makes one protein; this concept was overthrown by the discovery of alternative splicing and trans-splicing.

The definition of a gene is still changing. The first cases of RNA-based inheritance have been discovered in mammals. Evidence is also accumulating that the control regions of a gene do not necessarily have to be close to the coding sequence on the linear molecule or even on the same chromosome. Spilianakis and colleagues discovered that the promoter region of the interferon-gamma gene on chromosome 10 and the regulatory regions of the T(H)2 cytokine locus on chromosome 11 come into close proximity in the nucleus possibly to be jointly regulated.

The concept that genes are clearly delimited is also being eroded. There is evidence for fused proteins stemming from two adjacent genes that can produce two separate protein products. While it is not clear whether these fusion proteins are functional, the phenomenon is more frequent than previously thought. Even more ground-breaking than the discovery of fused genes is the observation that some proteins can be composed of exons from far away regions and even different chromosomes. This new data has led to an updated, and probably tentative, definition of a gene as "a union of genomic sequences encoding a coherent set of potentially overlapping functional products". This new definition categorizes genes by functional products, whether they be proteins or RNA, rather than specific DNA loci; all regulatory elements of DNA are therefore classified as gene-associated regions.

Read more about this topic:  Gene

Famous quotes containing the words changing and/or concept:

    Sweet love, I see, changing his property,
    Turns to the sourest and most deadly hate.
    William Shakespeare (1564–1616)

    It is impossible to dissociate language from science or science from language, because every natural science always involves three things: the sequence of phenomena on which the science is based; the abstract concepts which call these phenomena to mind; and the words in which the concepts are expressed. To call forth a concept, a word is needed; to portray a phenomenon, a concept is needed. All three mirror one and the same reality.
    Antoine Lavoisier (1743–1794)