Two-dimensional Gaussian Function
In two dimensions, the power to which e is raised in the Gaussian function is any negative-definite quadratic form. Consequently, the level sets of the Gaussian will always be ellipses.
A particular example of a two-dimensional Gaussian function is
Here the coefficient A is the amplitude, xo,yo is the center and σx, σy are the x and y spreads of the blob. The figure on the right was created using A = 1, xo = 0, yo = 0, σx = σy = 1.
In general, a two-dimensional elliptical Gaussian function is expressed as
where the matrix
is positive-definite.
Using this formulation, the figure on the right can be created using A = 1, (xo, yo) = (0, 0), a = c = 1/2, b = 0.
Read more about this topic: Gaussian Function
Famous quotes containing the word function:
“Uses are always much broader than functions, and usually far less contentious. The word function carries overtones of purpose and propriety, of concern with why something was developed rather than with how it has actually been found useful. The function of automobiles is to transport people and objects, but they are used for a variety of other purposesas homes, offices, bedrooms, henhouses, jetties, breakwaters, even offensive weapons.”
—Frank Smith (b. 1928)