Integral Form
The integral form of Gauss's law for gravity states:
where
- (also written ) denotes a surface integral over a closed surface,
- ∂V is any closed surface (the boundary of a closed volume V),
- dA is a vector, whose magnitude is the area of an infinitesimal piece of the surface ∂V, and whose direction is the outward-pointing surface normal (see surface integral for more details),
- g is the gravitational field,
- G is the universal gravitational constant, and
- M is the total mass enclosed within the surface ∂V.
The left-hand side of this equation is called the flux of the gravitational field. Note that it is always negative (or zero), and never positive. This can be contrasted with Gauss's law for electricity, where the flux can be either positive or negative. The difference is because charge can be either positive or negative, while mass can only be positive.
Read more about this topic: Gauss' Law For Gravity
Famous quotes containing the words integral and/or form:
“Make the most of your regrets; never smother your sorrow, but tend and cherish it till it come to have a separate and integral interest. To regret deeply is to live afresh.”
—Henry David Thoreau (18171862)
“Modernity exists in the form of a desire to wipe out whatever came earlier, in the hope of reaching at least a point that could be called a true present, a point of origin that marks a new departure.”
—Paul De Man (19191983)