Gamma Matrices - Mathematical Structure

Mathematical Structure

The defining property for the gamma matrices to generate a Clifford algebra is the anticommutation relation

where is the anticommutator, is the Minkowski metric with signature (+ − − −) and is the 4x4 unit matrix.

This defining property is considered to be more fundamental than the numerical values used in the gamma matrices. Covariant gamma matrices are defined by

and Einstein notation is assumed.

Note that the other sign convention for the metric, (− + + +) necessitates either a change in the defining equation:

or a multiplication of all gamma matrices by, which of course changes their hermiticity properties detailed below. Under the alternative sign convention for the metric the covariant gamma matrices are then defined by

.

Read more about this topic:  Gamma Matrices

Famous quotes containing the words mathematical and/or structure:

    An accurate charting of the American woman’s progress through history might look more like a corkscrew tilted slightly to one side, its loops inching closer to the line of freedom with the passage of time—but like a mathematical curve approaching infinity, never touching its goal. . . . Each time, the spiral turns her back just short of the finish line.
    Susan Faludi (20th century)

    Just as a new scientific discovery manifests something that was already latent in the order of nature, and at the same time is logically related to the total structure of the existing science, so the new poem manifests something that was already latent in the order of words.
    Northrop Frye (b. 1912)