Galois Theory - Permutation Group Approach To Galois Theory

Permutation Group Approach To Galois Theory

Given a polynomial, it may be that some of the roots are connected by various algebraic equations. For example, it may be that for two of the roots, say A and B, that A2 + 5B3 = 7. The central idea of Galois theory is to consider those permutations (or rearrangements) of the roots having the property that any algebraic equation satisfied by the roots is still satisfied after the roots have been permuted. An important proviso is that we restrict ourselves to algebraic equations whose coefficients are rational numbers. (One might instead specify a certain field in which the coefficients should lie but, for the simple examples below, we will restrict ourselves to the field of rational numbers.)

These permutations together form a permutation group, also called the Galois group of the polynomial (over the rational numbers). To illustrate this point, consider the following examples:

Read more about this topic:  Galois Theory

Famous quotes containing the words group, approach and/or theory:

    The virtue of dress rehearsals is that they are a free show for a select group of artists and friends of the author, and where for one unique evening the audience is almost expurgated of idiots.
    Alfred Jarry (1873–1907)

    I approach these questions unwillingly, as it wounds, but no cure can be effected without touching upon and handling them.
    Titus Livius (Livy)

    The theory of the Communists may be summed up in the single sentence: Abolition of private property.
    Karl Marx (1818–1883)