Connection To Category Theory
Every partially ordered set can be viewed as a category in a natural way: there is a unique morphism from x to y if and only if x ≤ y. A Galois connection is then nothing but a pair of adjoint functors between two categories that arise from partially ordered sets. In this context, the upper adjoint is the right adjoint while the lower adjoint is the left adjoint. However, this terminology is avoided for Galois connections, since there was a time when posets were transformed into categories in a dual fashion, i.e. with arrows pointing in the opposite direction. This led to a complementary notation concerning left and right adjoints, which today is ambiguous.
Read more about this topic: Galois Connection
Famous quotes containing the words connection, category and/or theory:
“It may comfort you to know that if your child reaches the age of eleven or twelve and you have a good bond or relationship, no matter how dramatic adolescence becomes, you children will probably turn out all right and want some form of connection to you in adulthood.”
—Charlotte Davis Kasl (20th century)
“I see no reason for calling my work poetry except that there is no other category in which to put it.”
—Marianne Moore (18871972)
“Everything to which we concede existence is a posit from the standpoint of a description of the theory-building process, and simultaneously real from the standpoint of the theory that is being built. Nor let us look down on the standpoint of the theory as make-believe; for we can never do better than occupy the standpoint of some theory or other, the best we can muster at the time.”
—Willard Van Orman Quine (b. 1908)