Fundamental Pair of Periods - Fundamental Region

Fundamental Region

Define τ = ω21 to be the half-period ratio. Then the lattice basis can always be chosen so that τ lies in a special region, called the fundamental domain. Alternately, there always exists an element of PSL(2,Z) that maps a lattice basis to another basis so that τ lies in the fundamental domain.

The fundamental domain is given by the set D, which is composed of a set U plus a part of the boundary of U:

where H is the upper half-plane.

The fundamental domain D is then built by adding the boundary on the left plus half the arc on the bottom:

If τ is not i and is not t=exp(1/3*pi*i), then there are exactly two lattice bases with the same τ in the fundamental region: namely, and . If then four lattice bases have the same τ: the above two and . If t=exp(1/3*pi*i) then there are six lattice bases with the same τ:, and their negatives. Note that and t=exp(1/3*pi*i) in the closure of the fundamental domain.

Read more about this topic:  Fundamental Pair Of Periods

Famous quotes containing the words fundamental and/or region:

    What is wanted—whether this is admitted or not—is nothing less than a fundamental remolding, indeed weakening and abolition of the individual: one never tires of enumerating and indicting all that is evil and inimical, prodigal, costly, extravagant in the form individual existence has assumed hitherto, one hopes to manage more cheaply, more safely, more equitably, more uniformly if there exist only large bodies and their members.
    Friedrich Nietzsche (1844–1900)

    America lives in the heart of every man everywhere who wishes to find a region where he will be free to work out his destiny as he chooses.
    Woodrow Wilson (1856–1924)