Fundamental Group - Universal Covering Space

Universal Covering Space

If X is a topological space that is path connected, locally path connected and locally simply connected, then it has a simply connected universal covering space on which the fundamental group π(X,x0) acts freely by deck transformations with quotient space X. This space can be constructed analogously to the fundamental group by taking pairs (x, γ), where x is a point in X and γ is a homotopy class of paths from x0 to x and the action of π(X, x0) is by concatenation of paths. It is uniquely determined as a covering space.

Read more about this topic:  Fundamental Group

Famous quotes containing the words universal, covering and/or space:

    The exuberant fertility of the universal will.
    Friedrich Nietzsche (1844–1900)

    You had to have seen the corpses lying there in front of the school—the men with their caps covering their faces—to know the meaning of class hatred and the spirit of revenge.
    Alfred Döblin (1878–1957)

    When my body leaves me
    I’m lonesome for it.
    but body
    goes away to I don’t know where
    and it’s lonesome to drift
    above the space it
    fills when it’s here.
    Denise Levertov (b. 1923)