Free Group

The free group FS with free generating set S can be constructed as follows. S is a set of symbols and we suppose for every s in S there is a corresponding "inverse" symbol, s−1, in a set S−1. Let T = SS−1, and define a word in S to be any written product of elements of T. That is, a word in S is an element of the monoid generated by T. The empty word is the word with no symbols at all. For example, if S = {a, b, c}, then T = {a, a−1, b, b−1, c, c−1}, and

is a word in S. If an element of S lies immediately next to its inverse, the word may be simplified by omitting the s, s−1 pair:

A word that cannot be simplified further is called reduced. The free group FS is defined to be the group of all reduced words in T. The group operation in FS is concatenation of words (followed by reduction if necessary). The identity is the empty word. A word is called cyclically reduced, if its first and last letter are not inverse to each other. Every word is conjugate to a cyclically reduced word, and the cyclically reduced conjugates of a cyclically reduced word are all cyclic permutations. For instance b−1abcb is not cyclically reduced, but is conjugate to abc, which is cyclically reduced. The only cyclically reduced conjugates of abc are abc, bca, and cab.

Read more about Free Group:  Universal Property, Facts and Theorems, Free Abelian Group, Tarski's Problems

Famous quotes containing the words free and/or group:

    For myself I found that the occupation of a day-laborer was the most independent of any, especially as it required only thirty or forty days in a year to support one. The laborer’s day ends with the going down of the sun, and he is then free to devote himself to his chosen pursuit, independent of his labor; but his employer, who speculates from month to month, has no respite from one end of the year to the other.
    Henry David Thoreau (1817–1862)

    The poet who speaks out of the deepest instincts of man will be heard. The poet who creates a myth beyond the power of man to realize is gagged at the peril of the group that binds him. He is the true revolutionary: he builds a new world.
    Babette Deutsch (1895–1982)