Free Group - Free Abelian Group

Free Abelian Group

Further information: free abelian group

The free abelian group on a set S is defined via its universal property in the analogous way, with obvious modifications: Consider a pair (F, φ), where F is an abelian group and φ: SF is a function. F is said to be the free abelian group on S with respect to φ if for any abelian group G and any function ψ: SG, there exists a unique homomorphism f: FG such that

f(φ(s)) = ψ(s), for all s in S.

The free abelian group on S can be explicitly identified as the free group F(S) modulo the subgroup generated by its commutators, i.e. its abelianisation. In other words, the free abelian group on S is the set of words that are distinguished only up to the order of letters. The rank of a free group can therefore also be defined as the rank of its abelianisation as a free abelian group.

Read more about this topic:  Free Group

Famous quotes containing the words free and/or group:

    What we want is not freedom but its appearances. It is for these simulacra that man has always striven. And since freedom, as has been said, is no more than a sensation, what difference is there between being free and believing ourselves free?
    E.M. Cioran (b. 1911)

    The trouble with tea is that originally it was quite a good drink. So a group of the most eminent British scientists put their heads together, and made complicated biological experiments to find a way of spoiling it. To the eternal glory of British science their labour bore fruit.
    George Mikes (b. 1912)