Free Abelian Group
Further information: free abelian groupThe free abelian group on a set S is defined via its universal property in the analogous way, with obvious modifications: Consider a pair (F, φ), where F is an abelian group and φ: S → F is a function. F is said to be the free abelian group on S with respect to φ if for any abelian group G and any function ψ: S → G, there exists a unique homomorphism f: F → G such that
- f(φ(s)) = ψ(s), for all s in S.
The free abelian group on S can be explicitly identified as the free group F(S) modulo the subgroup generated by its commutators, i.e. its abelianisation. In other words, the free abelian group on S is the set of words that are distinguished only up to the order of letters. The rank of a free group can therefore also be defined as the rank of its abelianisation as a free abelian group.
Read more about this topic: Free Group
Famous quotes containing the words free and/or group:
“Many lovers have been divorced
By having what is free enforced.”
—Robert Frost (18741963)
“My routines come out of total unhappiness. My audiences are my group therapy.”
—Joan Rivers (b. 1935)