Functional Completeness - Formal Definition

Formal Definition

Given the Boolean domain B = {0,1}, a set F of Boolean functions ƒi: BniB is functionally complete if the clone on B generated by the basic functions ƒi contains all functions ƒ: BnB, for all strictly positive integers n ≥ 1. In other words, the set is functionally complete if every Boolean function that takes at least one variable can be expressed in terms of the functions ƒi. Since every Boolean function of at least one variable can be expressed in terms of binary Boolean functions, F is functionally complete if and only if every binary Boolean function can be expressed in terms of the functions in F.

A more natural condition would be that the clone generated by F consist of all functions ƒ: BnB, for all integers n ≥ 0. However, the examples given above are not functionally complete in this stronger sense because it is not possible to write a nullary function, i.e. a constant expression, in terms of F if F itself does not contain at least one nullary function. With this stronger definition, the smallest functionally complete sets would have 2 elements.

Another natural condition would be that the clone generated by F together with the two nullary constant functions be functionally complete or, equivalently, functionally complete in the strong sense of the previous paragraph. The example of the Boolean function given by S(x, y, z) = z if x = y and S(x, y, z) = x otherwise shows that this condition is strictly weaker than functional completeness.

Read more about this topic:  Functional Completeness

Famous quotes containing the words formal and/or definition:

    That anger can be expressed through words and non-destructive activities; that promises are intended to be kept; that cleanliness and good eating habits are aspects of self-esteem; that compassion is an attribute to be prized—all these lessons are ones children can learn far more readily through the living example of their parents than they ever can through formal instruction.
    Fred Rogers (20th century)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)