Functional Completeness

Functional Completeness

In logic, a functionally complete set of logical connectives or Boolean operators is one which can be used to express all possible truth tables by combining members of the set into a Boolean expression. A well-known complete set of connectives is { AND, NOT }, consisting of binary conjunction and negation. The single-element sets { NAND } and { NOR } are also functionally complete.

In a context of propositional logic, functionally complete sets of connectives are also called (expressively) adequate.

From the point of view of digital electronics, functional completeness means that every possible logic gate can be realized as a network of gates of the types prescribed by the set. In particular, all logic gates can be assembled from either only binary NAND gates, or only binary NOR gates.

Read more about Functional Completeness:  Formal Definition, Informal Definition, Characterization of Functional Completeness, Minimal Functionally Complete Operator Sets, Examples, In Other Domains, Set Theory

Famous quotes containing the words functional and/or completeness:

    Indigenous to Minnesota, and almost completely ignored by its people, are the stark, unornamented, functional clusters of concrete—Minnesota’s grain elevators. These may be said to express unconsciously all the principles of modernism, being built for use only, with little regard for the tenets of esthetic design.
    —Federal Writers’ Project Of The Wor, U.S. public relief program (1935-1943)

    Poetry presents indivisible wholes of human consciousness, modified and ordered by the stringent requirements of form. Prose, aiming at a definite and concrete goal, generally suppresses everything inessential to its purpose; poetry, existing only to exhibit itself as an aesthetic object, aims only at completeness and perfection of form.
    Richard Harter Fogle, U.S. critic, educator. The Imagery of Keats and Shelley, ch. 1, University of North Carolina Press (1949)