Geometry of The Function Field
If V is a variety over a field K, then the function field K(V) is a field extension of the ground field K over which V is defined; its transcendence degree is equal to the dimension of the variety. All extensions of K that are finitely-generated as fields arise in this way from some algebraic variety.
Properties of the variety V that depend only on the function field are studied in birational geometry.
Read more about this topic: Function Field Of An Algebraic Variety
Famous quotes containing the words geometry of, geometry, function and/or field:
“The geometry of landscape and situation seems to create its own systems of time, the sense of a dynamic element which is cinematising the events of the canvas, translating a posture or ceremony into dynamic terms. The greatest movie of the 20th century is the Mona Lisa, just as the greatest novel is Grays Anatomy.”
—J.G. (James Graham)
“... geometry became a symbol for human relations, except that it was better, because in geometry things never go bad. If certain things occur, if certain lines meet, an angle is born. You cannot fail. Its not going to fail; it is eternal. I found in rules of mathematics a peace and a trust that I could not place in human beings. This sublimation was total and remained total. Thus, Im able to avoid or manipulate or process pain.”
—Louise Bourgeois (b. 1911)
“My function in life is not to be a politician in Parliament: it is to get something done.”
—Bernadette Devlin (b. 1947)
“The totality of our so-called knowledge or beliefs, from the most casual matters of geography and history to the profoundest laws of atomic physics or even of pure mathematics and logic, is a man-made fabric which impinges on experience only along the edges. Or, to change the figure, total science is like a field of force whose boundary conditions are experience.”
—Willard Van Orman Quine (b. 1908)