Function Composition - Functional Powers

Functional Powers

If then may compose with itself; this is sometimes denoted . Thus:

Repeated composition of a function with itself is called function iteration.

The functional powers for natural follow immediately.

  • By convention, the identity map on the domain of .
  • If admits an inverse function, negative functional powers are defined as the opposite power of the inverse function, .

Note: If f takes its values in a ring (in particular for real or complex-valued f ), there is a risk of confusion, as f n could also stand for the n-fold product of f, e.g. f 2(x) = f(x) · f(x).

(For trigonometric functions, usually the latter is meant, at least for positive exponents. For example, in trigonometry, this superscript notation represents standard exponentiation when used with trigonometric functions: sin2(x) = sin(x) · sin(x). However, for negative exponents (especially −1), it nevertheless usually refers to the inverse function, e.g., tan−1 = arctan (≠ 1/tan).

In some cases, an expression for f in g(x) = f r(x) can be derived from the rule for g given non-integer values of r. This is called fractional iteration. For instance, a half iterate of a function f is a function g satisfying g(g(x)) = f(x). Another example would be that where f is the successor function, f r(x) = x + r. This idea can be generalized so that the iteration count becomes a continuous parameter; in this case, such a system is called a flow.

Iterated functions and flows occur naturally in the study of fractals and dynamical systems.

Read more about this topic:  Function Composition

Famous quotes containing the words functional and/or powers:

    Stay-at-home mothers, . . . their self-esteem constantly assaulted, . . . are ever more fervently concerned that their offspring turn out better so they won’t have to stoop to say “I told you so.” Working mothers, . . . their self-esteem corroded by guilt, . . . are praying their kids turn out functional so they can stop being defensive and apologetic and instead assert “See? I did do it all.”
    Melinda M. Marshall (20th century)

    The powers of the federal government ... result from the compact to which the states are parties, [and are] limited by the plain sense and intention of the instrument constituting that compact.
    James Madison (1751–1836)