Composition Monoids
Suppose one has two (or more) functions f: X → X, g: X → X having the same domain and codomain. Then one can form long, potentially complicated chains of these functions composed together, such as f ∘ f ∘ g ∘ f. Such long chains have the algebraic structure of a monoid, called transformation monoid or composition monoid. In general, composition monoids can have remarkably complicated structure. One particular notable example is the de Rham curve. The set of all functions f: X → X is called the full transformation semigroup on X.
If the functions are bijective, then the set of all possible combinations of these functions forms a transformation group; and one says that the group is generated by these functions.
The set of all bijective functions f: X → X form a group with respect to the composition operator. This is the symmetric group, also sometimes called the composition group.
Read more about this topic: Function Composition
Famous quotes containing the word composition:
“Vices enter into the composition of virtues as poisons into the composition of certain medicines. Prudence and common sense mix them together, and make excellent use of them against the misfortunes that attend human life.”
—François, Duc De La Rochefoucauld (16131680)