Frobenius Algebra - Definition

Definition

A finite dimensional, unital, associative algebra A defined over a field k is said to be a Frobenius algebra if A is equipped with a nondegenerate bilinear form σ:A × Ak that satisfies the following equation: σ(a·b,c)=σ(a,b·c). This bilinear form is called the Frobenius form of the algebra.

Equivalently, one may equip A with a linear functional λ:Ak such that the kernel of λ contains no nonzero left ideal of A.

A Frobenius algebra is called symmetric if σ is symmetric, or equivalently λ satisfies λ(a·b) = λ(b·a).

There is also a different, mostly unrelated notion of the symmetric algebra of a vector space.

Read more about this topic:  Frobenius Algebra

Famous quotes containing the word definition:

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)