Every finitely generated free abelian group is isomorphic to for some natural number n called the rank of the free abelian group. In general, a free abelian group F has many different bases, but all bases have the same cardinality, and this cardinality is called the rank of F. This rank of free abelian groups can be used to define the rank of all other abelian groups: see rank of an abelian group. The relationships between different bases can be interesting; for example, the different possibilities for choosing a basis for the free abelian group of rank two is reviewed in the article on the fundamental pair of periods.
Read more about this topic: Free Abelian Group
Famous quotes containing the word rank:
“Pukka sahib or rank outsidergentleman or bounderand its accent, accent, all the way.”
—Christina Stead (19021983)
“The failure of women to produce genius of the first rank in most of the supreme forms of human effort has been used to block the way of all women of talent and ambition for intellectual achievement.”
—Anna Garlin Spencer (18511931)
“Do not use your rank to degrade others, nor use your cleverness to deceive others.”
—Chinese proverb.