History
See also: Fourier series#Historical developmentA primitive form of harmonic series dates back to ancient Babylonian mathematics, where they were used to compute ephemerides (tables of astronomical positions).
In modern times, variants of the discrete Fourier transform were used by Alexis Clairaut in 1754 to compute an orbit, which has been described as the first formula for the DFT, and in 1759 by Joseph Louis Lagrange, in computing the coefficients of a trigonometric series for a vibrating string. Technically, Clairaut's work was a cosine-only series (a form of discrete cosine transform), while Lagrange's work was a sine-only series (a form of discrete sine transform); a true cosine+sine DFT was used by Gauss in 1805 for trigonometric interpolation of asteroid orbits. Euler and Lagrange both discretized the vibrating string problem, using what would today be called samples.
An early modern development toward Fourier analysis was the 1770 paper Réflexions sur la résolution algébrique des équations by Lagrange, which in the method of Lagrange resolvents used a complex Fourier decomposition to study the solution of a cubic: Lagrange transformed the roots into the resolvents:
where ζ is a cubic root of unity, which is the DFT of order 3.
A number of authors, notably Jean le Rond d'Alembert, and Carl Friedrich Gauss used trigonometric series to study the heat equation, but the breakthrough development was the 1807 paper Mémoire sur la propagation de la chaleur dans les corps solides by Joseph Fourier, whose crucial insight was to model all functions by trigonometric series, introducing the Fourier series.
Historians are divided as to how much to credit Lagrange and others for the development of Fourier theory: Daniel Bernoulli and Leonhard Euler had introduced trigonometric representations of functions, and Lagrange had given the Fourier series solution to the wave equation, so Fourier's contribution was mainly the bold claim that an arbitrary function could be represented by a Fourier series.
The subsequent development of the field is known as harmonic analysis, and is also an early instance of representation theory.
The first fast Fourier transform (FFT) algorithm for the DFT was discovered around 1805 by Carl Friedrich Gauss when interpolating measurements of the orbit of the asteroids Juno and Pallas, although that particular FFT algorithm is more often attributed to its modern rediscoverers Cooley and Tukey.
Read more about this topic: Fourier Analysis
Famous quotes containing the word history:
“Whenever we read the obscene stories, the voluptuous debaucheries, the cruel and torturous executions, the unrelenting vindictiveness, with which more than half the Bible is filled, it would be more consistent that we called it the word of a demon than the Word of God. It is a history of wickedness that has served to corrupt and brutalize mankind.”
—Thomas Paine (17371809)
“Its nice to be a part of history but people should get it right. I may not be perfect, but Im bloody close.”
—John Lydon (formerly Johnny Rotten)
“Most events recorded in history are more remarkable than important, like eclipses of the sun and moon, by which all are attracted, but whose effects no one takes the trouble to calculate.”
—Henry David Thoreau (18171862)