Flamant Solution

The Flamant solution provides expressions for the stresses and displacements in a linear elastic wedge loaded by point forces at its sharp end. This solution was developed by A. Flamant in 1892 by modifying the three-dimensional solution of Boussinesq.

The stresses predicted by the Flamant solution are (in polar coordinates)

 \begin{align} \sigma_{rr} & = \frac{2C_1\cos\theta}{r} + \frac{2C_3\sin\theta}{r} \\ \sigma_{r\theta} & = 0 \\ \sigma_{\theta\theta} & = 0 \end{align}

where are constants that are determined from the boundary conditions and the geometry of the wedge (i.e., the angles ) and satisfy

 \begin{align} F_1 & + 2\int_{\alpha}^{\beta} (C_1\cos\theta + C_3\sin\theta)~\cos\theta~ d\theta = 0 \\ F_2 & + 2\int_{\alpha}^{\beta} (C_1\cos\theta + C_3\sin\theta)~\sin\theta~ d\theta = 0
\end{align}

where are the applied forces.

The wedge problem is self-similar and has no inherent length scale. Also, all quantities can be expressed in the separated-variable form . The stresses vary as .

Read more about Flamant Solution:  Forces Acting On A Half-plane, Derivation of Flamant Solution

Famous quotes containing the word solution:

    The Settlement ... is an experimental effort to aid in the solution of the social and industrial problems which are engendered by the modern conditions of life in a great city. It insists that these problems are not confined to any one portion of the city. It is an attempt to relieve, at the same time, the overaccumulation at one end of society and the destitution at the other ...
    Jane Addams (1860–1935)