Field Norm - Formal Definitions

Formal Definitions

1. Let K be a field and L a finite extension (and hence an algebraic extension) of K. Multiplication by α, an element of L, is a K-linear transformation

That is, L is viewed as a vector space over K, and mα is a linear transformation of this vector space into itself. The norm NL/K(α) is defined as the determinant of this linear transformation. Properties of the determinant imply that the norm belongs to K and

NL/K(αβ) = NL/K(α)NL/K(β)

so that the norm, when considered on non-zero elements, is a group homomorphism from the multiplicative group of L to that of K.

2. If L/K is a Galois extension, the norm NL/K of an element α of L is the product of all the conjugates

g(α)

of α, for g in the Galois group G of L/K.

Read more about this topic:  Field Norm

Famous quotes containing the words formal and/or definitions:

    True variety is in that plenitude of real and unexpected elements, in the branch charged with blue flowers thrusting itself, against all expectations, from the springtime hedge which seems already too full, while the purely formal imitation of variety ... is but void and uniformity, that is, that which is most opposed to variety....
    Marcel Proust (1871–1922)

    What I do not like about our definitions of genius is that there is in them nothing of the day of judgment, nothing of resounding through eternity and nothing of the footsteps of the Almighty.
    —G.C. (Georg Christoph)