Field Arithmetic - Pseudo Algebraically Closed Fields

Pseudo Algebraically Closed Fields

A pseudo algebraically closed field (in short PAC) K is a field satisfying the following geometric property. Each absolutely irreducible algebraic variety V defined over K has a K-rational point.

Over PAC fields there is a firm link between arithmetic properties of the field and group theoretic properties of its absolute Galois group. A nice theorem in this spirit connects Hilbertian fields with ω-free fields (K is ω-free if any embedding problem for K is properly solvable).

Theorem. Let K be a PAC field. Then K is Hilbertian if and only if K is ω-free.

Peter Roquette proved the right-to-left direction of this theorem and conjectured the opposite direction. Michael Fried and Helmut Völklein applied algebraic topology and complex analysis to establish Roquette's conjecture in characteristic zero. Later Pop proved the Theorem for arbitrary characteristic by developing "rigid patching".

Read more about this topic:  Field Arithmetic

Famous quotes containing the words pseudo, closed and/or fields:

    Logic is the last scientific ingredient of Philosophy; its extraction leaves behind only a confusion of non-scientific, pseudo problems.
    Rudolf Carnap (1891–1970)

    She was so overcome by the splendor of his achievement that she took him into the closet and selected a choice apple and delivered it to him, along with an improving lecture upon the added value and flavor a treat took to itself when it came without sin through virtuous effort. And while she closed with a Scriptural flourish, he “hooked” a doughnut.
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)

    I was in love with a beautiful blonde once. She drove me to drink. That’s the one thing I’m indebted to her for.
    Otis Criblecoblis, U.S. screenwriter. W.C. Fields (W.C. Fields)