Fibroblast Growth Factor Receptor 2

Fibroblast growth factor receptor 2 (FGFR2) also known as CD332 (cluster of differentiation 332) is a protein that in humans is encoded by the FGFR2 gene residing on chromosome 10. FGFR2 is a receptor for fibroblast growth factor.

The protein encoded by this gene is a member of the fibroblast growth factor receptor family, where amino acid sequence is highly conserved between members and throughout evolution. FGFR family members differ from one another in their ligand affinities and tissue distribution. A full-length representative protein consists of an extracellular region, composed of three immunoglobulin domains, a single hydrophobic membrane-spanning segment and a cytoplasmic tyrosine kinase domain. The extracellular portion of the protein interacts with fibroblast growth factors, setting in motion a cascade of downstream signals, ultimately influencing mitogenesis and differentiation. This particular family member is a high-affinity receptor for acidic, basic and/or keratinocyte growth factor, depending on the isoform.

Read more about Fibroblast Growth Factor Receptor 2:  Isoforms, Interactions, Clinical Significance, Function and Mutations

Famous quotes containing the words growth, factor and/or receptor:

    All growth is a leap in the dark, a spontaneous unpremeditated act without benefit of experience.
    Henry Miller (1891–1980)

    In his very rejection of art Walt Whitman is an artist. He tried to produce a certain effect by certain means and he succeeded.... He stands apart, and the chief value of his work is in its prophecy, not in its performance. He has begun a prelude to larger themes. He is the herald to a new era. As a man he is the precursor of a fresh type. He is a factor in the heroic and spiritual evolution of the human being. If Poetry has passed him by, Philosophy will take note of him.
    Oscar Wilde (1854–1900)

    The disinterest [of my two great-aunts] in anything that had to do with high society was such that their sense of hearing ... put to rest its receptor organs and allowed them to suffer the true beginnings of atrophy.
    Marcel Proust (1871–1922)