Fibroblast Growth Factor Receptor 2 - Function and Mutations

Function and Mutations

FGFR2 has important roles in embryonic development and tissue repair, especially bone and blood vessels. Like the other members of the Fibroblast growth factor receptor family, these receptors signal by binding to their ligand and dimerisation (pairing of receptors), which causes the tyrosine kinase domains to initiate a cascade of intracellular signals. On a molecular level these signals mediate cell division, growth and differentiation.

As mentioned, FGFR2 mutations are associated with craniosynostosis syndromes, which are skull malformations caused by premature fusion of cranial sutures and other disease features according to the mutation itself. Analysis of chromosomal anomalies in patients led to the identification and confirmation of FGFR2 as a cleft lip and/or palate locus. On a molecular level, mutations that affect FGFR2IIIc are associated with marked changes in osteoblast proliferation and differentiation. Alteration in FGFR2 signalling is thought to underlie the craniosynostosis syndromes. To date, there are two mechanisms of altered FGFR2 signalling. The first is associated with constitutive activation of FGFR, where the FGFR2 receptor is always signalling, regardless of the amount of FGF ligand. This mechanism is found in patients with Crouzon and Pfeiffer syndrome. The second, which is associated with Apert syndrome is a loss of specificity of the FGFR2 isoform, resulting in the receptor binding to FGFs that it does not normally bind.

Read more about this topic:  Fibroblast Growth Factor Receptor 2

Famous quotes containing the word function:

    The function of the actor is to make the audience imagine for the moment that real things are happening to real people.
    George Bernard Shaw (1856–1950)