Structure Groups and Transition Functions
Fiber bundles often come with a group of symmetries which describe the matching conditions between overlapping local trivialization charts. Specifically, let G be a topological group which acts continuously on the fiber space F on the left. We lose nothing if we require G to act effectively on F so that it may be thought of as a group of homeomorphisms of F. A G-atlas for the bundle (E, B, π, F) is a local trivialization such that for any two overlapping charts (Ui, φi) and (Uj, φj) the function
is given by
where tij : Ui ∩ Uj → G is a continuous map called a transition function. Two G-atlases are equivalent if their union is also a G-atlas. A G-bundle is a fiber bundle with an equivalence class of G-atlases. The group G is called the structure group of the bundle; the analogous term in physics is gauge group.
In the smooth category, a G-bundle is a smooth fiber bundle where G is a Lie group and the corresponding action on F is smooth and the transition functions are all smooth maps.
The transition functions tij satisfy the following conditions
The third condition applies on triple overlaps Ui ∩ Uj ∩ Uk and is called the cocycle condition (see Čech cohomology). The importance of this is that the transition functions determine the fiber bundle (if one assumes the Čech cocycle condition).
A principal G-bundle is a G-bundle where the fiber F is a principal homogeneous space for the left action of G itself (equivalently, one can specify that the action of G on the fiber F is free and transitive). In this case, it is often a matter of convenience to identify F with G and so obtain a (right) action of G on the principal bundle.
Read more about this topic: Fiber Bundle
Famous quotes containing the words structure, groups, transition and/or functions:
“There is no such thing as a language, not if a language is anything like what many philosophers and linguists have supposed. There is therefore no such thing to be learned, mastered, or born with. We must give up the idea of a clearly defined shared structure which language-users acquire and then apply to cases.”
—Donald Davidson (b. 1917)
“Belonging to a group can provide the child with a variety of resources that an individual friendship often cannota sense of collective participation, experience with organizational roles, and group support in the enterprise of growing up. Groups also pose for the child some of the most acute problems of social lifeof inclusion and exclusion, conformity and independence.”
—Zick Rubin (20th century)
“The most remarkable aspect of the transition we are living through is not so much the passage from want to affluence as the passage from labor to leisure.... Leisure contains the future, it is the new horizon.... The prospect then is one of unremitting labor to bequeath to future generations a chance of founding a society of leisure that will overcome the demands and compulsions of productive labor so that time may be devoted to creative activities or simply to pleasure and happiness.”
—Henri Lefebvre (b. 1901)
“The English masses are lovable: they are kind, decent, tolerant, practical and not stupid. The tragedy is that there are too many of them, and that they are aimless, having outgrown the servile functions for which they were encouraged to multiply. One day these huge crowds will have to seize power because there will be nothing else for them to do, and yet they neither demand power nor are ready to make use of it; they will learn only to be bored in a new way.”
—Cyril Connolly (19031974)