Arithmetic Operations
The arithmetic operations of R can be partially extended to R as follows:
Here, "a + ∞" means both "a + (+∞)" and "a − (−∞)", and "a − ∞" means both "a − (+∞)" and "a + (−∞)".
The expressions ∞ − ∞, 0 × (±∞) and ±∞ / ±∞ (called indeterminate forms) are usually left undefined. These rules are modeled on the laws for infinite limits. However, in the context of probability or measure theory, 0 × (±∞) is often defined as 0.
The expression 1/0 is not defined either as +∞ or −∞, because although it is true that whenever f(x) → 0 for a continuous function f(x) it must be the case that 1/f(x) is eventually contained in every neighborhood of the set {−∞, +∞}, it is not true that 1/f(x) must tend to one of these points. An example is f(x) = 1/(sin(1/x)). (Its modulus 1/| f(x) |, nevertheless, does approach +∞.)
Read more about this topic: Extended Real Number Line
Famous quotes containing the words arithmetic and/or operations:
“Tis no extravagant arithmetic to say, that for every ten jokes,thou hast got an hundred enemies; and till thou hast gone on, and raised a swarm of wasps about thine ears, and art half stung to death by them, thou wilt never be convinced it is so.”
—Laurence Sterne (17131768)
“A sociosphere of contact, control, persuasion and dissuasion, of exhibitions of inhibitions in massive or homeopathic doses...: this is obscenity. All structures turned inside out and exhibited, all operations rendered visible. In America this goes all the way from the bewildering network of aerial telephone and electric wires ... to the concrete multiplication of all the bodily functions in the home, the litany of ingredients on the tiniest can of food, the exhibition of income or IQ.”
—Jean Baudrillard (b. 1929)