Exponential Type - Basic Idea

Basic Idea

A function f(z) defined on the complex plane is said to be of exponential type if there exist constants M and τ such that

in the limit of . Here, the complex variable z was written as to emphasize that the limit must hold in all directions θ. Letting τ stand for the infimum of all such τ, one then says that the function f is of exponential type τ.

For example, let . Then one says that is of exponential type π, since π is the smallest number that bounds the growth of along the imaginary axis. So, for this example, Carlson's theorem cannot apply, as it requires functions of exponential type less than π. Similarly, the Euler-MacLaurin formula cannot be applied either, as it, too, expresses an theorem ultimately anchored in the theory of finite differences.

Read more about this topic:  Exponential Type

Famous quotes containing the words basic and/or idea:

    Scientific reason, with its strict conscience, its lack of prejudice, and its determination to question every result again the moment it might lead to the least intellectual advantage, does in an area of secondary interest what we ought to be doing with the basic questions of life.
    Robert Musil (1880–1942)

    The idea that information can be stored in a changing world without an overwhelming depreciation of its value is false. It is scarcely less false than the more plausible claim that after a war we may take our existing weapons, fill their barrels with cylinder oil, and coat their outsides with sprayed rubber film, and let them statically await the next emergency.
    Norbert Wiener (1894–1964)