Euler's Continued Fraction Formula

In the analytic theory of continued fractions, Euler's continued fraction formula is an identity connecting a certain very general infinite series with an infinite continued fraction. First published in 1748, it was at first regarded as a simple identity connecting a finite sum with a finite continued fraction in such a way that the extension to the infinite case was immediately apparent. Today it is more fully appreciated as a useful tool in analytic attacks on the general convergence problem for infinite continued fractions with complex elements.

Read more about Euler's Continued Fraction Formula:  The Original Formula, Euler's Formula in Modern Notation

Famous quotes containing the words continued, fraction and/or formula:

    The problems of society will also be the problems of the predominant language of that society. It is the carrier of its perceptions, its attitudes, and its goals, for through it, the speakers absorb entrenched attitudes. The guilt of English then must be recognized and appreciated before its continued use can be advocated.
    Njabulo Ndebele (b. 1948)

    The visual is sorely undervalued in modern scholarship. Art history has attained only a fraction of the conceptual sophistication of literary criticism.... Drunk with self-love, criticism has hugely overestimated the centrality of language to western culture. It has failed to see the electrifying sign language of images.
    Camille Paglia (b. 1947)

    Every formula which expresses a law of nature is a hymn of praise to God.
    Maria Mitchell (1818–1889)