Euler's Continued Fraction Formula - Euler's Formula in Modern Notation

Euler's Formula in Modern Notation

If


x = \cfrac{1}{1 + \cfrac{a_2}{b_2 + \cfrac{a_3}{b_3 + \cfrac{a_4}{b_4 + \ddots}}}}\,

is a continued fraction with complex elements and none of the denominators Bi are zero, a sequence of ratios {ri} can be defined by


r_i = -\frac{a_{i+1}B_{i-1}}{B_{i+1}}.\,

For x and ri so defined, these equalities can be proved by induction.


x = \cfrac{1}{1 + \cfrac{a_2}{b_2 + \cfrac{a_3}{b_3 + \cfrac{a_4}{b_4 + \ddots}}}} =
\cfrac{1}{1 - \cfrac{r_1}{1 + r_1 - \cfrac{r_2}{1 + r_2 - \cfrac{r_3}{1 + r_3 - \ddots}}}}\,

x = 1 + \sum_{i=1}^\infty r_1r_2\cdots r_i = 1 + \sum_{i=1}^\infty \left( \prod_{j=1}^i r_j \right)\,

Here equality is to be understood as equivalence, in the sense that the n'th convergent of each continued fraction is equal to the n'th partial sum of the series shown above. So if the series shown is convergent – or uniformly convergent, when the ai's and bi's are functions of some complex variable z – then the continued fractions also converge, or converge uniformly.

Read more about this topic:  Euler's Continued Fraction Formula

Famous quotes containing the words formula and/or modern:

    But suppose, asks the student of the professor, we follow all your structural rules for writing, what about that “something else” that brings the book alive? What is the formula for that? The formula for that is not included in the curriculum.
    Fannie Hurst (1889–1968)

    Not so many years ago there there was no simpler or more intelligible notion than that of going on a journey. Travel—movement through space—provided the universal metaphor for change.... One of the subtle confusions—perhaps one of the secret terrors—of modern life is that we have lost this refuge. No longer do we move through space as we once did.
    Daniel J. Boorstin (b. 1914)