The Original Formula
Euler derived the formula as an identity connecting a finite sum of products with a finite continued fraction.
The identity is easily established by induction on n, and is therefore applicable in the limit: if the expression on the left is extended to represent a convergent infinite series, the expression on the right can also be extended to represent a convergent infinite continued fraction.
Read more about this topic: Euler's Continued Fraction Formula
Famous quotes containing the words original and/or formula:
“He would cry out on life, that what it wants
Is not its own love back in copy speech,
But counter-love, original response.”
—Robert Frost (18741963)
“Ideals possess the strange quality that if they were completely realized they would turn into nonsense. One could easily follow a commandment such as Thou shalt not kill to the point of dying of starvation; and I might establish the formula that for the proper functioning of the mesh of our ideals, as in the case of a strainer, the holes are just as important as the mesh.”
—Robert Musil (18801942)