Euclidean Geometry - As A Description of The Structure of Space

As A Description of The Structure of Space

Euclid believed that his axioms were self-evident statements about physical reality. Euclid's proofs depend upon assumptions perhaps not obvious in Euclid's fundamental axioms, in particular that certain movements of figures do not change their geometrical properties such as the lengths of sides and interior angles, the so-called Euclidean motions, which include translations and rotations of figures. Taken as a physical description of space, postulate 2 (extending a line) asserts that space does not have holes or boundaries (in other words, space is homogeneous and unbounded); postulate 4 (equality of right angles) says that space is isotropic and figures may be moved to any location while maintaining congruence; and postulate 5 (the parallel postulate) that space is flat (has no intrinsic curvature).

As discussed in more detail below, Einstein's theory of relativity significantly modifies this view.

The ambiguous character of the axioms as originally formulated by Euclid makes it possible for different commentators to disagree about some of their other implications for the structure of space, such as whether or not it is infinite (see below) and what its topology is. Modern, more rigorous reformulations of the system typically aim for a cleaner separation of these issues. Interpreting Euclid's axioms in the spirit of this more modern approach, axioms 1-4 are consistent with either infinite or finite space (as in elliptic geometry), and all five axioms are consistent with a variety of topologies (e.g., a plane, a cylinder, or a torus for two-dimensional Euclidean geometry).

Read more about this topic:  Euclidean Geometry

Famous quotes containing the words description, structure and/or space:

    The next Augustan age will dawn on the other side of the Atlantic. There will, perhaps, be a Thucydides at Boston, a Xenophon at New York, and, in time, a Virgil at Mexico, and a Newton at Peru. At last, some curious traveller from Lima will visit England and give a description of the ruins of St Paul’s, like the editions of Balbec and Palmyra.
    Horace Walpole (1717–1797)

    Vashtar: So it’s finished. A structure to house one man and the greatest treasure of all time.
    Senta: And a structure that will last for all time.
    Vashtar: Only history will tell that.
    Senta: Sire, will he not be remembered?
    Vashtar: Yes, he’ll be remembered. The pyramid’ll keep his memory alive. In that he built better than he knew.
    William Faulkner (1897–1962)

    What a phenomenon it has been—science fiction, space fiction—exploding out of nowhere, unexpectedly of course, as always happens when the human mind is being forced to expand; this time starwards, galaxy-wise, and who knows where next.
    Doris Lessing (b. 1919)