Elementary Substructures and Elementary Extensions
N is an elementary substructure of M if N and M are structures of the same signature σ such that for all first-order σ-formulas φ(x1, …, xn) with free variables x1, …, xn, and all elements a1, …, an of N, φ(a1, …, an) holds in N if and only if it holds in M:
- N φ(a1, …, an) iff M φ(a1, …, an).
It follows that N is a substructure of M.
If N is a substructure of M, then both N and M can be interpreted as structures in the signature σN consisting of σ together with a new constant symbol for every element of N. N is an elementary substructure of M if and only if N is a substructure of M and N and M are elementarily equivalent as σN-structures.
If N is an elementary substructure of M, one writes N M and says that M is an elementary extension of N: M N.
The downward Löwenheim–Skolem theorem gives a countable elementary substructure for any infinite first-order structure; the upward Löwenheim–Skolem theorem gives elementary extensions of any infinite first-order structure of arbitrarily large cardinality.
Read more about this topic: Elementary Equivalence
Famous quotes containing the words elementary and/or extensions:
“If men as individuals surrender to the call of their elementary instincts, avoiding pain and seeking satisfaction only for their own selves, the result for them all taken together must be a state of insecurity, of fear, and of promiscuous misery.”
—Albert Einstein (18791955)
“If we focus exclusively on teaching our children to read, write, spell, and count in their first years of life, we turn our homes into extensions of school and turn bringing up a child into an exercise in curriculum development. We should be parents first and teachers of academic skills second.”
—Neil Kurshan (20th century)