Elementary Equivalence - Elementarily Equivalent Structures

Elementarily Equivalent Structures

Two structures M and N of the same signature σ are elementarily equivalent if every first-order sentence (formula without free variables) over σ is true in M if and only if it is true in N, i.e. if M and N have the same complete first-order theory. If M and N are elementarily equivalent, one writes MN.

A first-order theory is complete if and only if any two of its models are elementarily equivalent.

For example, consider the language with one binary relation symbol '<'. The model R of real numbers with its usual order and the model Q of rational numbers with its usual order are elementarily equivalent, since they both interpret '<' as an unbounded dense linear ordering. This is sufficient to ensure elementary equivalence, because the theory of unbounded dense linear orderings is complete, as can be shown by Vaught's test.

More generally, any first-order theory has non-isomorphic, elementary equivalent models, which can be obtained via the Löwenheim–Skolem theorem. Thus, for example, there are non-standard models of Peano arithmetic, which contain other objects than just the numbers 0, 1, 2, etc., and yet are elementarily equivalent to the standard model.

Read more about this topic:  Elementary Equivalence

Famous quotes containing the words equivalent and/or structures:

    Perhaps basketball and poetry have just a few things in common, but the most important is the possibility of transcendence. The opposite is labor. In writing, every writer knows when he or she is laboring to achieve an effect. You want to get from here to there, but find yourself willing it, forcing it. The equivalent in basketball is aiming your shot, a kind of strained and usually ineffective purposefulness. What you want is to be in some kind of flow, each next moment a discovery.
    Stephen Dunn (b. 1939)

    If there are people who feel that God wants them to change the structures of society, that is something between them and their God. We must serve him in whatever way we are called. I am called to help the individual; to love each poor person. Not to deal with institutions. I am in no position to judge.
    Mother Teresa (b. 1910)