Electrovacuum Solution - Test Fields

Test Fields

Sometimes one can assume that the field energy of any electromagnetic field is so small that its gravitational effects can be neglected. Then, to obtain an approximate electrovacuum solution, we need only solve the Maxwell equations on a given vacuum solution. In this case, the electromagnetic field is often called a test field, in analogy with the term test particle (denoting a small object whose mass is too small to contribute appreciably to the ambient gravitational field).

Here, it is useful to know that any Killing vectors which may be present will (in the case of a vacuum solution) automatically satisfy the curved spacetime Maxwell equations.

Note that this procedure amounts to assuming that the electromagnetic field, but not the gravitational field, is "weak". Sometimes we can go even further; if the gravitational field is also considered "weak", we can independently solve the linearised Einstein field equations and the (flat spacetime) Maxwell equations on a Minkowksi vacuum background. Then the (weak) metric tensor gives the approximate geometry; the Minkowski background is unobservable by physical means, but mathematically much simpler to work with, whenever we can get away with such a sleight-of-hand.

Read more about this topic:  Electrovacuum Solution

Famous quotes containing the words test and/or fields:

    I have come to believe ... that the stage may do more than teach, that much of our current moral instruction will not endure the test of being cast into a lifelike mold, and when presented in dramatic form will reveal itself as platitudinous and effete. That which may have sounded like righteous teaching when it was remote and wordy will be challenged afresh when it is obliged to simulate life itself.
    Jane Addams (1860–1935)

    What doubts, what hypotheses, what labyrinths of amusement, what fields of disputation, what an ocean of false learning, may be avoided by that single notion of immaterialism!
    George Berkeley (1685–1753)